Reprinted from Mathematics Magazine 40.5(1967)284.

Exponential Derivative

653. [March, 1967] Proposed by by Sam Newman, Atlantic City, New Jersey. What is $d y / d x$ of

II. Solution by Stanley Rabinowitz, Far Rockaway, New York.

Let f_{n} denote the function $x^{x} \cdots x$ (where there are $n x$'s). $\left(d f_{n} / d x\right)=f_{n} f_{n-1} / x$ $+f_{n}(\ln x) d f_{n-1} / d x$. Using this formula, one easily finds that

$$
\frac{d f_{n}}{d x}=f_{n} f_{n-1} / x+f_{n} f_{n-1} f_{n-2}(\ln x) / x+f_{n} f_{n-1}(\ln x)^{2} \frac{d f_{n-2}}{d x} .
$$

Continuing to substitute, one gets by induction

$$
\frac{d f_{n}}{d x}=\sum_{j=1}^{k}\left[\frac{(\ln x)^{j-1}}{x} \prod_{i=0}^{j} f_{n-i}\right]+\left[\prod_{i=0}^{k-1} f_{n-i}\right](\ln x)^{k} \frac{d f_{n-k}}{d x}
$$

When $k=n-1$, we have

$$
\frac{d f_{n}}{d x}=\sum_{j=1}^{n-1}\left[\frac{(\ln x)^{j-1}}{x} \prod_{i=0}^{j} f_{n-i}\right]+(\ln x)^{n-1} \prod_{i=0}^{n-2} f_{n-i}
$$

